2025-10-10 16:07:00 +08:00

853 lines
23 KiB
C
Executable File

/* pwdbased.c
*
* Copyright (C) 2006-2022 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifndef NO_PWDBASED
#include <wolfssl/wolfcrypt/pwdbased.h>
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/hash.h>
#include <wolfssl/wolfcrypt/integer.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef HAVE_PBKDF1
/* PKCS#5 v1.5 with non standard extension to optionally derive the extra data (IV) */
int wc_PBKDF1_ex(byte* key, int keyLen, byte* iv, int ivLen,
const byte* passwd, int passwdLen, const byte* salt, int saltLen,
int iterations, int hashType, void* heap)
{
int err;
int keyLeft, ivLeft, i;
int digestLeft, store;
int keyOutput = 0;
int diestLen;
byte digest[WC_MAX_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_HashAlg* hash = NULL;
#else
wc_HashAlg hash[1];
#endif
enum wc_HashType hashT;
(void)heap;
if (key == NULL || keyLen < 0 || passwdLen < 0 || saltLen < 0 || ivLen < 0){
return BAD_FUNC_ARG;
}
if (iterations <= 0)
iterations = 1;
hashT = wc_HashTypeConvert(hashType);
err = wc_HashGetDigestSize(hashT);
if (err < 0)
return err;
diestLen = err;
/* initialize hash */
#ifdef WOLFSSL_SMALL_STACK
hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), heap,
DYNAMIC_TYPE_HASHCTX);
if (hash == NULL)
return MEMORY_E;
#endif
err = wc_HashInit_ex(hash, hashT, heap, INVALID_DEVID);
if (err != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(hash, heap, DYNAMIC_TYPE_HASHCTX);
#endif
return err;
}
keyLeft = keyLen;
ivLeft = ivLen;
while (keyOutput < (keyLen + ivLen)) {
digestLeft = diestLen;
/* D_(i - 1) */
if (keyOutput) { /* first time D_0 is empty */
err = wc_HashUpdate(hash, hashT, digest, diestLen);
if (err != 0) break;
}
/* data */
err = wc_HashUpdate(hash, hashT, passwd, passwdLen);
if (err != 0) break;
/* salt */
if (salt) {
err = wc_HashUpdate(hash, hashT, salt, saltLen);
if (err != 0) break;
}
err = wc_HashFinal(hash, hashT, digest);
if (err != 0) break;
/* count */
for (i = 1; i < iterations; i++) {
err = wc_HashUpdate(hash, hashT, digest, diestLen);
if (err != 0) break;
err = wc_HashFinal(hash, hashT, digest);
if (err != 0) break;
}
if (err != 0) break;
if (keyLeft) {
store = min(keyLeft, diestLen);
XMEMCPY(&key[keyLen - keyLeft], digest, store);
keyOutput += store;
keyLeft -= store;
digestLeft -= store;
}
if (ivLeft && digestLeft) {
store = min(ivLeft, digestLeft);
if (iv != NULL)
XMEMCPY(&iv[ivLen - ivLeft],
&digest[diestLen - digestLeft], store);
keyOutput += store;
ivLeft -= store;
}
}
wc_HashFree(hash, hashT);
#ifdef WOLFSSL_SMALL_STACK
XFREE(hash, heap, DYNAMIC_TYPE_HASHCTX);
#endif
if (err != 0)
return err;
if (keyOutput != (keyLen + ivLen))
return BUFFER_E;
return err;
}
/* PKCS#5 v1.5 */
int wc_PBKDF1(byte* output, const byte* passwd, int pLen, const byte* salt,
int sLen, int iterations, int kLen, int hashType)
{
return wc_PBKDF1_ex(output, kLen, NULL, 0,
passwd, pLen, salt, sLen, iterations, hashType, NULL);
}
#endif /* HAVE_PKCS5 */
#if defined(HAVE_PBKDF2) && !defined(NO_HMAC)
int wc_PBKDF2_ex(byte* output, const byte* passwd, int pLen, const byte* salt,
int sLen, int iterations, int kLen, int hashType, void* heap, int devId)
{
word32 i = 1;
int hLen;
int j, ret;
#ifdef WOLFSSL_SMALL_STACK
byte* buffer;
Hmac* hmac;
#else
byte buffer[WC_MAX_DIGEST_SIZE];
Hmac hmac[1];
#endif
enum wc_HashType hashT;
if (output == NULL || pLen < 0 || sLen < 0 || kLen < 0) {
return BAD_FUNC_ARG;
}
if (iterations <= 0)
iterations = 1;
hashT = wc_HashTypeConvert(hashType);
hLen = wc_HashGetDigestSize(hashT);
if (hLen < 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
buffer = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buffer == NULL)
return MEMORY_E;
hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC);
if (hmac == NULL) {
XFREE(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
ret = wc_HmacInit(hmac, heap, devId);
if (ret == 0) {
/* use int hashType here, since HMAC FIPS uses the old unique value */
ret = wc_HmacSetKey(hmac, hashType, passwd, pLen);
while (ret == 0 && kLen) {
int currentLen;
ret = wc_HmacUpdate(hmac, salt, sLen);
if (ret != 0)
break;
/* encode i */
for (j = 0; j < 4; j++) {
byte b = (byte)(i >> ((3-j) * 8));
ret = wc_HmacUpdate(hmac, &b, 1);
if (ret != 0)
break;
}
/* check ret from inside for loop */
if (ret != 0)
break;
ret = wc_HmacFinal(hmac, buffer);
if (ret != 0)
break;
currentLen = min(kLen, hLen);
XMEMCPY(output, buffer, currentLen);
for (j = 1; j < iterations; j++) {
ret = wc_HmacUpdate(hmac, buffer, hLen);
if (ret != 0)
break;
ret = wc_HmacFinal(hmac, buffer);
if (ret != 0)
break;
xorbuf(output, buffer, currentLen);
}
/* check ret from inside for loop */
if (ret != 0)
break;
output += currentLen;
kLen -= currentLen;
i++;
}
wc_HmacFree(hmac);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
#endif
return ret;
}
int wc_PBKDF2(byte* output, const byte* passwd, int pLen, const byte* salt,
int sLen, int iterations, int kLen, int hashType)
{
return wc_PBKDF2_ex(output, passwd, pLen, salt, sLen, iterations, kLen,
hashType, NULL, INVALID_DEVID);
}
#endif /* HAVE_PBKDF2 && !NO_HMAC */
#ifdef HAVE_PKCS12
/* helper for PKCS12_PBKDF(), does hash operation */
static int DoPKCS12Hash(int hashType, byte* buffer, word32 totalLen,
byte* Ai, word32 u, int iterations)
{
int i;
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
wc_HashAlg* hash = NULL;
#else
wc_HashAlg hash[1];
#endif
enum wc_HashType hashT;
if (buffer == NULL || Ai == NULL) {
return BAD_FUNC_ARG;
}
hashT = wc_HashTypeConvert(hashType);
/* initialize hash */
#ifdef WOLFSSL_SMALL_STACK
hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), NULL,
DYNAMIC_TYPE_HASHCTX);
if (hash == NULL)
return MEMORY_E;
#endif
ret = wc_HashInit(hash, hashT);
if (ret != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(hash, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
ret = wc_HashUpdate(hash, hashT, buffer, totalLen);
if (ret == 0)
ret = wc_HashFinal(hash, hashT, Ai);
for (i = 1; i < iterations; i++) {
if (ret == 0)
ret = wc_HashUpdate(hash, hashT, Ai, u);
if (ret == 0)
ret = wc_HashFinal(hash, hashT, Ai);
}
wc_HashFree(hash, hashT);
#ifdef WOLFSSL_SMALL_STACK
XFREE(hash, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
int wc_PKCS12_PBKDF(byte* output, const byte* passwd, int passLen,
const byte* salt, int saltLen, int iterations, int kLen, int hashType,
int id)
{
return wc_PKCS12_PBKDF_ex(output, passwd, passLen, salt, saltLen,
iterations, kLen, hashType, id, NULL);
}
/* extended API that allows a heap hint to be used */
int wc_PKCS12_PBKDF_ex(byte* output, const byte* passwd, int passLen,
const byte* salt, int saltLen, int iterations, int kLen,
int hashType, int id, void* heap)
{
/* all in bytes instead of bits */
word32 u, v, dLen, pLen, iLen, sLen, totalLen;
int dynamic = 0;
int ret = 0;
int i;
byte *D, *S, *P, *I;
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force dynamic usage */
#else
byte staticBuffer[1024];
#endif
byte* buffer = staticBuffer;
#ifdef WOLFSSL_SMALL_STACK
byte* Ai = NULL;
byte* B = NULL;
mp_int *B1 = NULL;
mp_int *i1 = NULL;
mp_int *res = NULL;
#else
byte Ai[WC_MAX_DIGEST_SIZE];
byte B[WC_MAX_BLOCK_SIZE];
mp_int B1[1];
mp_int i1[1];
mp_int res[1];
#endif
enum wc_HashType hashT;
(void)heap;
if (output == NULL || passLen <= 0 || saltLen <= 0 || kLen < 0) {
return BAD_FUNC_ARG;
}
if (iterations <= 0)
iterations = 1;
hashT = wc_HashTypeConvert(hashType);
ret = wc_HashGetDigestSize(hashT);
if (ret < 0)
return ret;
if (ret == 0)
return BAD_STATE_E;
u = ret;
ret = wc_HashGetBlockSize(hashT);
if (ret < 0)
return ret;
if (ret == 0)
return BAD_STATE_E;
v = ret;
#ifdef WOLFSSL_SMALL_STACK
Ai = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (Ai == NULL)
return MEMORY_E;
B = (byte*)XMALLOC(WC_MAX_BLOCK_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (B == NULL) {
XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
return MEMORY_E;
}
#endif
XMEMSET(Ai, 0, WC_MAX_DIGEST_SIZE);
XMEMSET(B, 0, WC_MAX_BLOCK_SIZE);
dLen = v;
sLen = v * ((saltLen + v - 1) / v);
/* with passLen checked at the top of the function for >= 0 then passLen
* must be 1 or greater here and is always 'true' */
pLen = v * ((passLen + v - 1) / v);
iLen = sLen + pLen;
totalLen = dLen + sLen + pLen;
if (totalLen > sizeof(staticBuffer)) {
buffer = (byte*)XMALLOC(totalLen, heap, DYNAMIC_TYPE_KEY);
if (buffer == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(B, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return MEMORY_E;
}
dynamic = 1;
}
D = buffer;
S = D + dLen;
P = S + sLen;
I = S;
XMEMSET(D, id, dLen);
for (i = 0; i < (int)sLen; i++)
S[i] = salt[i % saltLen];
for (i = 0; i < (int)pLen; i++)
P[i] = passwd[i % passLen];
#ifdef WOLFSSL_SMALL_STACK
if (((B1 = (mp_int *)XMALLOC(sizeof(*B1), heap, DYNAMIC_TYPE_TMP_BUFFER))
== NULL) ||
((i1 = (mp_int *)XMALLOC(sizeof(*i1), heap, DYNAMIC_TYPE_TMP_BUFFER))
== NULL) ||
((res = (mp_int *)XMALLOC(sizeof(*res), heap, DYNAMIC_TYPE_TMP_BUFFER))
== NULL)) {
ret = MEMORY_E;
goto out;
}
#endif
while (kLen > 0) {
word32 currentLen;
ret = DoPKCS12Hash(hashType, buffer, totalLen, Ai, u, iterations);
if (ret < 0)
break;
for (i = 0; i < (int)v; i++)
B[i] = Ai[i % u];
if (mp_init(B1) != MP_OKAY)
ret = MP_INIT_E;
else if (mp_read_unsigned_bin(B1, B, v) != MP_OKAY)
ret = MP_READ_E;
else if (mp_add_d(B1, (mp_digit)1, B1) != MP_OKAY)
ret = MP_ADD_E;
if (ret != 0) {
mp_clear(B1);
break;
}
for (i = 0; i < (int)iLen; i += v) {
int outSz;
if (mp_init_multi(i1, res, NULL, NULL, NULL, NULL) != MP_OKAY) {
ret = MP_INIT_E;
break;
}
if (mp_read_unsigned_bin(i1, I + i, v) != MP_OKAY)
ret = MP_READ_E;
else if (mp_add(i1, B1, res) != MP_OKAY)
ret = MP_ADD_E;
else if ( (outSz = mp_unsigned_bin_size(res)) < 0)
ret = MP_TO_E;
else {
if (outSz > (int)v) {
/* take off MSB */
byte tmp[WC_MAX_BLOCK_SIZE + 1];
ret = mp_to_unsigned_bin(res, tmp);
XMEMCPY(I + i, tmp + 1, v);
}
else if (outSz < (int)v) {
XMEMSET(I + i, 0, v - outSz);
ret = mp_to_unsigned_bin(res, I + i + v - outSz);
}
else
ret = mp_to_unsigned_bin(res, I + i);
}
mp_clear(i1);
mp_clear(res);
if (ret < 0) break;
}
if (ret < 0) {
mp_clear(B1);
break;
}
currentLen = min(kLen, (int)u);
XMEMCPY(output, Ai, currentLen);
output += currentLen;
kLen -= currentLen;
mp_clear(B1);
}
#ifdef WOLFSSL_SMALL_STACK
out:
if (Ai != NULL)
XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (B != NULL)
XFREE(B, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (B1 != NULL)
XFREE(B1, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (i1 != NULL)
XFREE(i1, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (res != NULL)
XFREE(res, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (dynamic)
XFREE(buffer, heap, DYNAMIC_TYPE_KEY);
return ret;
}
#endif /* HAVE_PKCS12 */
#ifdef HAVE_SCRYPT
/* Rotate the 32-bit value a by b bits to the left.
*
* a 32-bit value.
* b Number of bits to rotate.
* returns rotated value.
*/
#define R(a, b) rotlFixed(a, b)
/* (2^32 - 1) */
#define SCRYPT_WORD32_MAX 4294967295U
/* One round of Salsa20/8.
* Code taken from RFC 7914: scrypt PBKDF.
*
* out Output buffer.
* in Input data to hash.
*/
static void scryptSalsa(word32* out, word32* in)
{
int i;
word32 x[16];
#ifdef LITTLE_ENDIAN_ORDER
for (i = 0; i < 16; ++i)
x[i] = in[i];
#else
for (i = 0; i < 16; i++)
x[i] = ByteReverseWord32(in[i]);
#endif
for (i = 8; i > 0; i -= 2) {
x[ 4] ^= R(x[ 0] + x[12], 7); x[ 8] ^= R(x[ 4] + x[ 0], 9);
x[12] ^= R(x[ 8] + x[ 4], 13); x[ 0] ^= R(x[12] + x[ 8], 18);
x[ 9] ^= R(x[ 5] + x[ 1], 7); x[13] ^= R(x[ 9] + x[ 5], 9);
x[ 1] ^= R(x[13] + x[ 9], 13); x[ 5] ^= R(x[ 1] + x[13], 18);
x[14] ^= R(x[10] + x[ 6], 7); x[ 2] ^= R(x[14] + x[10], 9);
x[ 6] ^= R(x[ 2] + x[14], 13); x[10] ^= R(x[ 6] + x[ 2], 18);
x[ 3] ^= R(x[15] + x[11], 7); x[ 7] ^= R(x[ 3] + x[15], 9);
x[11] ^= R(x[ 7] + x[ 3], 13); x[15] ^= R(x[11] + x[ 7], 18);
x[ 1] ^= R(x[ 0] + x[ 3], 7); x[ 2] ^= R(x[ 1] + x[ 0], 9);
x[ 3] ^= R(x[ 2] + x[ 1], 13); x[ 0] ^= R(x[ 3] + x[ 2], 18);
x[ 6] ^= R(x[ 5] + x[ 4], 7); x[ 7] ^= R(x[ 6] + x[ 5], 9);
x[ 4] ^= R(x[ 7] + x[ 6], 13); x[ 5] ^= R(x[ 4] + x[ 7], 18);
x[11] ^= R(x[10] + x[ 9], 7); x[ 8] ^= R(x[11] + x[10], 9);
x[ 9] ^= R(x[ 8] + x[11], 13); x[10] ^= R(x[ 9] + x[ 8], 18);
x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18);
}
#ifdef LITTLE_ENDIAN_ORDER
for (i = 0; i < 16; ++i)
out[i] = in[i] + x[i];
#else
for (i = 0; i < 16; i++)
out[i] = ByteReverseWord32(ByteReverseWord32(in[i]) + x[i]);
#endif
}
/* Mix a block using Salsa20/8.
* Based on RFC 7914: scrypt PBKDF.
*
* b Blocks to mix.
* y Temporary storage.
* r Size of the block.
*/
static void scryptBlockMix(byte* b, byte* y, int r)
{
byte x[64];
#ifdef WORD64_AVAILABLE
word64* b64 = (word64*)b;
word64* y64 = (word64*)y;
word64* x64 = (word64*)x;
#else
word32* b32 = (word32*)b;
word32* y32 = (word32*)y;
word32* x32 = (word32*)x;
#endif
int i;
int j;
/* Step 1. */
XMEMCPY(x, b + (2 * r - 1) * 64, sizeof(x));
/* Step 2. */
for (i = 0; i < 2 * r; i++)
{
#ifdef WORD64_AVAILABLE
for (j = 0; j < 8; j++)
x64[j] ^= b64[i * 8 + j];
#else
for (j = 0; j < 16; j++)
x32[j] ^= b32[i * 16 + j];
#endif
scryptSalsa((word32*)x, (word32*)x);
XMEMCPY(y + i * 64, x, sizeof(x));
}
/* Step 3. */
for (i = 0; i < r; i++) {
#ifdef WORD64_AVAILABLE
for (j = 0; j < 8; j++) {
b64[i * 8 + j] = y64[2 * i * 8 + j];
b64[(r + i) * 8 + j] = y64[(2 * i + 1) * 8 + j];
}
#else
for (j = 0; j < 16; j++) {
b32[i * 16 + j] = y32[2 * i * 16 + j];
b32[(r + i) * 16 + j] = y32[(2 * i + 1) * 16 + j];
}
#endif
}
}
/* Random oracles mix.
* Based on RFC 7914: scrypt PBKDF.
*
* x Data to mix.
* v Temporary buffer.
* y Temporary buffer for the block mix.
* r Block size parameter.
* n CPU/Memory cost parameter.
*/
static void scryptROMix(byte* x, byte* v, byte* y, int r, word32 n)
{
word32 i;
word32 j;
word32 k;
word32 bSz = 128 * r;
#ifdef WORD64_AVAILABLE
word64* x64 = (word64*)x;
word64* v64 = (word64*)v;
#else
word32* x32 = (word32*)x;
word32* v32 = (word32*)v;
#endif
/* Step 1. X = B (B not needed therefore not implemented) */
/* Step 2. */
for (i = 0; i < n; i++)
{
XMEMCPY(v + i * bSz, x, bSz);
scryptBlockMix(x, y, r);
}
/* Step 3. */
for (i = 0; i < n; i++)
{
#ifdef LITTLE_ENDIAN_ORDER
#ifdef WORD64_AVAILABLE
j = *(word64*)(x + (2*r - 1) * 64) & (n-1);
#else
j = *(word32*)(x + (2*r - 1) * 64) & (n-1);
#endif
#else
byte* t = x + (2*r - 1) * 64;
j = (t[0] | (t[1] << 8) | (t[2] << 16) | ((word32)t[3] << 24)) & (n-1);
#endif
#ifdef WORD64_AVAILABLE
for (k = 0; k < bSz / 8; k++)
x64[k] ^= v64[j * bSz / 8 + k];
#else
for (k = 0; k < bSz / 4; k++)
x32[k] ^= v32[j * bSz / 4 + k];
#endif
scryptBlockMix(x, y, r);
}
/* Step 4. B' = X (B = X = B' so not needed, therefore not implemented) */
}
/* Generates an key derived from a password and salt using a memory hard
* algorithm.
* Implements RFC 7914: scrypt PBKDF.
*
* output The derived key.
* passwd The password to derive key from.
* passLen The length of the password.
* salt The key specific data.
* saltLen The length of the salt data.
* cost The CPU/memory cost parameter. Range: 1..(128*r/8-1)
* (Iterations = 2^cost)
* blockSize The number of 128 byte octets in a working block.
* parallel The number of parallel mix operations to perform.
* (Note: this implementation does not use threads.)
* dkLen The length of the derived key in bytes.
* returns BAD_FUNC_ARG when: blockSize is too large for cost.
*/
int wc_scrypt(byte* output, const byte* passwd, int passLen,
const byte* salt, int saltLen, int cost, int blockSize,
int parallel, int dkLen)
{
int ret = 0;
int i;
byte* v = NULL;
byte* y = NULL;
byte* blocks = NULL;
word32 blocksSz;
word32 bSz;
if (blockSize > 8)
return BAD_FUNC_ARG;
if (cost < 1 || cost >= 128 * blockSize / 8 || parallel < 1 || dkLen < 1)
return BAD_FUNC_ARG;
/* The following comparison used to be:
* ((word32)parallel > (SCRYPT_MAX / (128 * blockSize)))
* where SCRYPT_MAX is (2^32 - 1) * 32. For some compilers, the RHS of
* the comparison is greater than parallel's type. It wouldn't promote
* both sides to word64. What follows is just arithmetic simplification.
*/
if ((word32)parallel > (SCRYPT_WORD32_MAX / (4 * blockSize)))
return BAD_FUNC_ARG;
bSz = 128 * blockSize;
if ((word32)parallel > (SCRYPT_WORD32_MAX / bSz))
return BAD_FUNC_ARG;
blocksSz = bSz * parallel;
blocks = (byte*)XMALLOC(blocksSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (blocks == NULL) {
ret = MEMORY_E;
goto end;
}
/* Temporary for scryptROMix. */
v = (byte*)XMALLOC((1 << cost) * bSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (v == NULL) {
ret = MEMORY_E;
goto end;
}
/* Temporary for scryptBlockMix. */
y = (byte*)XMALLOC(blockSize * 128, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (y == NULL) {
ret = MEMORY_E;
goto end;
}
/* Step 1. */
ret = wc_PBKDF2(blocks, passwd, passLen, salt, saltLen, 1, blocksSz,
WC_SHA256);
if (ret != 0)
goto end;
/* Step 2. */
for (i = 0; i < parallel; i++)
scryptROMix(blocks + i * bSz, v, y, blockSize, 1 << cost);
/* Step 3. */
ret = wc_PBKDF2(output, passwd, passLen, blocks, blocksSz, 1, dkLen,
WC_SHA256);
end:
if (blocks != NULL)
XFREE(blocks, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (v != NULL)
XFREE(v, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (y != NULL)
XFREE(y, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* Generates an key derived from a password and salt using a memory hard
* algorithm.
* Implements RFC 7914: scrypt PBKDF.
*
* output Derived key.
* passwd Password to derive key from.
* passLen Length of the password.
* salt Key specific data.
* saltLen Length of the salt data.
* iterations Number of iterations to perform. Range: 1 << (1..(128*r/8-1))
* blockSize Number of 128 byte octets in a working block.
* parallel Number of parallel mix operations to perform.
* (Note: this implementation does not use threads.)
* dkLen Length of the derived key in bytes.
* returns BAD_FUNC_ARG when: iterations is not a power of 2 or blockSize is too
* large for iterations.
*/
int wc_scrypt_ex(byte* output, const byte* passwd, int passLen,
const byte* salt, int saltLen, word32 iterations,
int blockSize, int parallel, int dkLen)
{
int cost;
/* Iterations must be a power of 2. */
if ((iterations & (iterations - 1)) != 0)
return BAD_FUNC_ARG;
for (cost = -1; iterations != 0; cost++) {
iterations >>= 1;
}
return wc_scrypt(output, passwd, passLen, salt, saltLen, cost, blockSize,
parallel, dkLen);
}
#endif /* HAVE_SCRYPT */
#endif /* NO_PWDBASED */